VELP Scientifica Solutions for Stirring Shafts ## **STIRRING SHAFTS** | | Stirring shaft with floating blades | Stirring shaft with folding blade | Stirring shaft with fixed blade | Stirring shaft with propeller | Stirring shaft with 6-hole paddle | Stirring shaft with turbine | Stirring shaft with turbo propeller | Stirring shaft with anchor | |-------------------|--|---|--|--|--|--|---|---| | | A00001304 | A00001305 | A00001306 | A00001307 | A00001308 | A00001309 | A00001310 | A00001311 | | | | 7 | 1 | 3 | | W. | 1 | | | | 0000 | | | | | | | DE | | Blade Ø (mm) | 93 | 60 | 50 | 60 | 69 | 49 | 46 | 45 | | Shaft Ø (mm) | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 | | Shaft Lenght (mm) | 400 | 400 | 400 | 400 | 450 | 450 | 450 | 450 | | Speed range | M-H | M-H | M-H | M-H | L-M | M-H | M-H | L-H | | Viscosity Range | VL-L | VL-L | VL-L-M | VL-L-M | L-M | M-H | M-H | M-H | | Flow Pattern | Radial | Radial | Radial | Axial | Tangential | Radial | Axial | Tangential | | | The two blades that open as the speed rises generate a radial flow in the container, from the top towards the bottom. Particularly recommended for stirring in narrowneck containers, e.g. flasks. | The blade that automatically falls into line during rotation generates a radial flow in the container, from the top towards the bottom. Particularly recommended for stirring in narrowneck containers. | It generates a radial flow in the container, from the top towards the bottom. Employment: Use at medium-high speed for whirling light solids, for flocculations, mixing thickening agents, stirring sludge, etc. | Standard stirring shaft. It generates an axial flow in the container with suction of the substance from the bottom towards the top and localized occurence of shearing forces. | It generates a
tangential flow with
reduced turbulence
and with gentle
mixing of the
product. | It generates a radial
flow with suction of
the product from
the top towards
the bottom, with
high turbulence and
high shearing forces. | It generates an axial flow in the container with suction of the substance from the top towards the bottom with low shearing forces. Limited danger of any contact of the blade with the walls of the product's container. | It generates a
tangential flow with
high shearing forces
on the ends. The
flow generated
limits the possibility
of sedimentation on
the walls of the
container. | Speed Range Low (L) <250</td> Medium (M) 250-800 High (H) >800 | Viscosity Range | | | | | | |-----------------|--------------|--|--|--|--| | Very Low (VL) | 0-100 | | | | | | Low (L) | 100-1000 | | | | | | Medium (M) | 1000-10000 | | | | | | High (H) | 10000-100000 | | | | |